Technique in Measuring Residual Stresses of Physical Vapor Deposition (PVD) Hard Coatings

نویسندگان

  • Quanshun Luo
  • Shicai Yang
چکیده

Residual stresses of physical vapor deposition (PVD) hard coatings can be measured using X-ray diffraction (XRD) methods under either conventional d-sin2 ψ mode or glancing incident (GIXRD) mode, in which substantial uncertainties exist depending on the applied diffraction parameters. This paper reports systematic research on the effect of the two analytical modes, as well as the anisotropic elastic modulus, on the measured residual stress values. A magnetron sputtered TiN grown on hardened tool steel was employed as the sample coating, to measure its residual stress using various diffraction peaks from {111} to {422} acquired at a range of incident glancing angles from 2◦ to 35◦. The results were interpreted in terms of the effective X-ray penetration depth, which has been found to be determined predominantly by the incident glancing angle. In the d-sin2 ψmode, the results present an approximate residual stress over a depth of effective X-ray penetration, and it is recommended to use a diffraction peak of high-index lattice plane from {311} to {422}. The GIXRD mode helps determine a depth profile of residual stress, since the measured residual stress depends strongly on the X-ray penetration. In addition, the anisotropy of elastic modulus shows limited influence on the calculated residual stress value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of PVD hard coatings

Last 2 to 3 decades application of PVD (physical vapour deposition) hard coatings exponentially grows. However, the use of hard, thin films in the field of machine elements is the exception rather than the rule. The main problem lies in the relatively high contact pressure and the very complex loading of machine components, which demand a hard resistance surface and a tough core. In seminar it ...

متن کامل

Review of Physical Vapour Deposition (pvd) Techniques for Hard Coating

This paper is a review on the status of hard coating of various physical vapour deposition (PVD) techniques and compare their properties. The use of hard and wear resistant PVD coatings on cutting tools is now widespread in global manufacturing for reducing production cost and improving productivity, all of which are essential if industry is to remain economically competitive. The review includ...

متن کامل

Ti-Cr-N Coatings Deposited by Physical Vapor Deposition on AISI D6 Tool Steels

In this study, physical vapor deposition (PVD) Ti-Cr-N coatings were deposited at two different temperatures 100 and 400ºC on hardened and tempered tool steel substrates. The influence of the applied deposition temperature on the physical and mechanical properties of coatings such as roughness, thickness, phase composition, hardness and Young’s modulus were evaluated. Phase compositions were st...

متن کامل

Study of multilayer and multi-component coatings deposited using cathodic Arc technique on H-13 hot work steel for die-casting applications

Die casting process is used since long, but even today problems like erosion, corrosion, soldering and sticking affect die life. These dies undergo thermal cyclic loads from 70 oC to 600 oC during processing. Physical Vapor Deposition (PVD) hard coating can play an important role in such extreme applications. In the present work, we report the use of Chromium based multila...

متن کامل

Corrosion Behavior of Ti/TiN Multilayer Nanostructured Coatings Applied on AISI 316L by Arc-PVD Method in the Simulated Body Fluid

In this investigation, Ti/TiN nanolayer and TiN single layer coatings were coated on substrate of AISI 316L stainless steel by applying physical vapor deposition (PVD) using the type of cathodic arc evaporation (CAE). The evaluation of microstructure were carried out using x-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM) as well as scanning electron microscopy (SEM). Pola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017